Been there. Done that.
Time to Rethink Teaching and Curricular Design

Norbert J. Pienta
University of Georgia
Importance of chemistry

…from a popular perspective…
Top Ten Scientific Discoveries

12Dec12

- Higgs boson discovered
- Curiosity lands on Mars
- Rise of rare variants [disease genomics]
- Genome sequencing for fetuses
- Quantum teleportation distance record broken [particles]
- Life’s new chemical code [synthetic DNA polymer]
- SpaceX launches to space station [first private company]
- Earth’s exoplanet twin
- Scientist reach Lake Vostok [frozen under Antarctica]
- Ending invasive chimp research

13Dec18

- Humankind goes interstellar [36 y.o. Voyager in deep space]
- Genome editing
- Billions and billions of Earths
- Global warming: cause for the pause [deep oceans, equatorial Pacific]
- See-through brain [treatments to make transparent by fluorescence]
- Intergalactic neutrinos [detector]
- New North American mammal [olinquito]
- Pesticide controversy [neonicotinoids]
- Making organs from stem cells
- Implantable electronics [biodegradable]
What have we been doing in General Chemistry?

...curricula and content...
Introductory science taught in lectures

Persistent Questions

- Stress theory, facts, or both?
- Do we teach too much?
- “Electronic” concepts?
- Early in the course?
WHAT WE TEACH OUR FRESHMEN IN CHEMISTRY

JACOB CORNOG AND J. C. COLBERT, CHEMISTRY DEPARTMENT,
UNIVERSITY OF IOWA, IOWA CITY, IOWA

TABLE V. DATA FROM QUESTIONNAIRES FROM 27 COLLEGES AND UNIVERSITIES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ames (Iowa)</td>
<td>1200</td>
<td>Mc P&H</td>
<td>Theory</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Arkansas</td>
<td>250</td>
<td>Mc P&H</td>
<td>Both</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>California</td>
<td>800</td>
<td>Hild</td>
<td>Theory</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chicago</td>
<td>150</td>
<td>Smith</td>
<td>Theory</td>
<td>.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chicago</td>
<td>150</td>
<td>McC & T</td>
<td>Both</td>
<td>.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Columbia</td>
<td>400</td>
<td>Smith</td>
<td>Facts</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cornell</td>
<td>1100</td>
<td>Mc P&H</td>
<td>Facts</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Harvard</td>
<td>400</td>
<td>Smith</td>
<td>Theory</td>
<td>No</td>
<td>Yes</td>
<td>After 3 mos.</td>
</tr>
<tr>
<td>Illinois</td>
<td>1300</td>
<td>Noyes</td>
<td>Both</td>
<td>Yes</td>
<td>No</td>
<td>.</td>
</tr>
<tr>
<td>Iowa U</td>
<td>600</td>
<td>Smith</td>
<td>Both</td>
<td>Yes</td>
<td>No</td>
<td>.</td>
</tr>
<tr>
<td>Purdue</td>
<td>1000</td>
<td>Holmes</td>
<td>Both</td>
<td>No</td>
<td>No</td>
<td>.</td>
</tr>
<tr>
<td>Stanford</td>
<td>300</td>
<td>Holmes</td>
<td>Theory</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Totals</td>
<td>18100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Theory: 13 Yes 18 Yes 20 Yes 12
Fact: 2 No 7 No 7 No 10
Both: 3

CONTENT OF COLLEGE TEXTS

- DESCRIPTIVE: 56.6%
- USEFUL APPLICATION: 13.6%
- THEORY: 20.8%
- EQS & PROBS: 8.7%
The role of textbooks

...a short historical perspective...
Some Perspectives

Smith’s College Chemistry by James Kendall
- © 1905, 1906, 1908, 1916, 1923, 1929
- 759 pages, 49 chapters

Chemistry by Michell Sienko and Robert Plane
- Self-published in 1957 ($4)
- 2nd ed: 623 pages ($7.50)
- Followed basic principles

Topics
- Chemical view of matter
- Chemical Change
- Combining Proportions
- Atomic Theory
- Symbols
- Oxygen
- Gases
- Hydrogen
- Valence
- Water
- Molecular Weights...

Nothing that is not completely correct
Do not oversimplify; instead omit
Help students understand
Nothing not given in lectures
Lots of problems
Distinguish fact from theory
Theory before descriptive chemistry
Publishers Dictate Curriculum?

Commercial enterprise

- mid-1980s to mid-1990s: 25+ publishers
- Current: 5+ publishers
- Costly / profitable
 - From $450 for text, study guide, solutions manual, CD
 - To $120 e-book
 - To OpenStax (free??)

More is better

- choices of chapters became need to cover the material

“Sausage” model
What can we do?

…and how to decide…
Making decisions based on evidence

National Academy of Science studies / papers

• DBER Report (2012)
 • Discipline-Based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering
 • http://www.nap.edu/catalog/13362/discipline-based-education-research-understanding-and-improving-learning-in-undergraduate

• DBER into practice (2015)
 • Reaching Students: What Research Says About Effective Instruction in Undergraduate Science and Engineering
 • http://www.nap.edu/catalog/18687/reaching-students-what-research-says-about-effective-instruction-in-undergraduate
Evidence about active learning

PNAS Active Learning Metastudy

- 225 studies
- All class sizes show benefit; greatest for <50 students
- Significant for all of STEM
- Effect sizes
 - performance on exams, concepts inventories: active vs lecture avg = +0.47 SD
 - odds ratio for failing on traditional = 1.95
 - “Active” class scored +6% on exams: half letter grade;
 - Traditional class 1.5x chance of failure (i.e., DFW)

Peer Instruction

Peer Instruction Model

• Eric Mazur (Harvard, Physics)
• since 1991

• Basis for current use of “clickers” in classroom

Process Oriented Guided Inquiry Learning

- Franklin & Marshall → NSF grants → nat’l dissemination → www.pogil.org
- Learning cycle

\[
\begin{align*}
E & \rightarrow \text{inductive} \rightarrow I \rightarrow \text{deductive} \rightarrow A \\
\text{Exploration} & \rightarrow \text{Concept Invention (Term Introduction)} \rightarrow \text{Application}
\end{align*}
\]

- Groups with roles [manager, reporter, observer]
- Activities / worksheets / questions

[https://pogil.org/]
Peer Led Team Learning

- Gosser, Varma-Nelson, Kampmeier → NSF grants → nat’l dissemination
- cooperative learning groups [some roots in Supplemental Instruction]
- team leader is critical [role & training]
- group activities / questions

SCALE-UP (or TILE) Classrooms

Student Centered Active Learning Environment
w/ Upsidedown Pedagogies

- Bob Beichner (NCSU, Physics); ~40 years
- groups: 3 @ 3 = 9
- activities
- technology
Curricular alternatives

Commercial

- ACS sponsored General Chemistry text
- Atoms first (fundamentals of matter and atoms)

CLUE (“Chemistry, Life, the Universe and Everything”)

- Melanie Cooper (Michigan St) and Mike Klymkovsky (Colorado)
- structure & properties, bonding & interactions, energy, change
- addresses large number of bio majors

“Chemical Thinking”

- Vicente Talanquer (Arizona)
- way of thinking rather than static body of knowledge

References:

- Cooper & Klymkovsky: http://clue.chemistry.msu.edu/