

Mathematics The Language of Critical Thinking

José Reyes STEM Institute, February 26, 2016

Outline

- Introduction
- Some Historical Background
- The Food Science Program
- Language
- Skill/knowledge Transfer
- Values

History

Antoine Lavoisier (1743 - 1794)

www.britannica.com

Nicolas Apert (1749 - 1841)

Pierre Simon Laplace (1749 - 1827)

Today's Food Science Graduates

- Know more chemistry than Lavoisier's ever dreamed
 - Two freshmen chemistries and one organic chemistry
- Know more about food preservation than Apert in his 92 year.
 - They understand microbiology, biochemiostry, and processing principles
- Know only a fraction of what Laplace knew about math

Issues in Food Processing

YEAR 1 FALL	YEAR 1 SPRING	YEAR 2 FALL	YEAR 2 SPRING	YEAR 3 FALL	YEAR 3 SPRING	YEAR 4 FALL	YEAR 4 SPRING
		NUMB	ER OF CREI	DITS (TOTA	L 121)		
	15	15	14	15	16	16	16

YEAR 1 FALL	YEAR 1 SPRING	YEAR 2 FALL	YEAR 2 SPRING	YEAR 3 FALL	YEAR 3 SPRING	YEAR 4 FALL	YEAR 4 SPRING
		NUMB	ER OF CRE	DITS (TOTA	L 121)		
14	15	15	14	15	16	16	16

Parlez-vous $\Pi \alpha Jh$?

What does math look like in the mind of an average student?

How can we make math more appealing to students?

Parlez-vous $\Pi \alpha Jh$?

 What triggers the interest of an individual to learn another language?

Parlez-vous $\Pi \alpha Jh$?

 What triggers the interest of an individual to learn another language?

- Need to understand
- Need to communicate
- Need to make choices
- Need to create

Bernoulli

$$W_{p} = \frac{P_{2} - P_{1}}{\rho} + \frac{g(Z_{2} - Z_{1})}{g_{c}} + \frac{(v_{2}^{2} - v_{1}^{2})}{2g_{c}} + \frac{2f\overline{v}^{2}L}{g_{c}D} + K_{fe}\frac{\overline{v}_{a}^{2}}{2g_{c}} + K_{fc}\frac{\overline{v}_{c}^{2}}{2g_{c}} + K_{ff}\frac{\overline{v}_{a}^{2}}{2g_{c}}$$

Math as a Language

- Propositions
 - Axioms (considered often as self-evident/true)
 - Theorems (can be proven/derived)

Characterized as true or false

Often describe natural phenomena

Extended to social sciences and economy

Truth vs. Fantasy

You are awesome vs. your work is awesome

You can't handle the truth!

Hypothesis

 Students that develop stronger quantitative skills become inherently better critical thinkers.

On-line learning modules

Expected Results

- Improved quantitative skills of the type that are covered in the modules
- Quantitative skills of one type will transfer to quantitative skills of a different type
- Quantitative skills will transfer to critical thinking and decision making of in unrelated topics.

Experiment

- Split the class into 2 randomly.
- Pre-assess both groups to make sure there are no significant differences in critical thinking
- Assess after half of the group has been exposed to the modules
- Determine whether and the type of differences

Decision Making

Critical Thinking

 Drive the choices that we make, provided that the mechanism by which we assess the options is rigorous and honest.

Moral Thinking (Food for Thought)

- Prioritize what is urgent
 - All human beings are equally worth
 - All animals are equally worth
 - Humans and animals are equally worth

THANK YOU!

José Reyes jireyes@uga.edu